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Abstract
The phonon properties of hexagonal multiferroic RMnO3 materials are studied
using a Green’s function technique. The calculations are performed on the
basis of the Heisenberg and the transverse Ising model taking into account
anharmonic spin–phonon and phonon–phonon interaction terms. The strong
spin–phonon interaction leads to an anomaly in the phonon energy and the
damping around the magnetic and ferroelectric phase transitions. The phonon
spectrum is discussed for different exchange, magnetoelectric and spin–phonon
interaction constants. It is shown that the phonon energy depends on the radius
of the rare earth ion rR. The influence of an applied magnetic field on the phonon
spectrum is studied, too. The predictions are consistent with experimental
results.

1. Introduction

Magnetoelectric multiferroics, materials which exhibit simultaneous magnetic and ferroelectric
order, have attracted a lot of attention in recent years because of their potential for cross
electric and magnetic functionality [1]. To obtain a fundamental understanding of multiferroics,
the experimental observation and understanding of the coupling mechanism between the
(anti)ferroelectric and (anti)ferromagnetic order are of great importance. However, very
little is know about the behaviour of phonons in magnetoelectric multiferroics, even though
investigations of phonons have in the past played a crucial role in the understanding of
classic ferroelectrics. Phonons are also known to be influenced by spin correlation, thus
offering a complementary tool [2, 3]. Recent investigations using Raman and infrared (IR)
spectroscopy, by transmittance and reflectance measurements, have revealed the importance
of phonon effects in multiferroics. There is experimental evidence for a strong spin–phonon
coupling in these substances [4–13]. The experimental results reveal pronounced phonon
anomalies around the magnetic phase transition temperature. These anomalies are attributed
to the multiferroic character of the materials. Raman and infrared spectra of YMnO3 were
reported and discussed by Iliev et al [14] and Kim et al [15]. Martin-Carron et al studied the
Raman phonons in RMnO3 orthorhombic and hexagonal manganites as a function of the rare
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earth ion and temperature [16]. The sign and magnitude of such anomalous phonon shifts
appear to be correlated with the ionic radius R in the multiferroic system RMn2O5 [17],
evolving from softening for R = Bi to hardening for R = Dy and showing an intermediate
behaviour for R = Eu. Based on temperature dependence of the far-IR transmission spectra of
multiferroic YMn2O5 and TbMn2O5 single crystals, Suchkov et al [18] reported observation of
electromagnons in RMn2O5 compounds. The phonon energy and phonon damping are different
for the different compounds. Different selection rules for electromagnons in RMn2O5 and
RMnO3 suggest different magnetoelastic coupling mechanisms in the two multiferroic systems.
Cheong [19] has shown that acoustic phonons in hexagonal HoMnO3 can be significantly
influenced by an applied magnetic field H . The influence of a magnetic field on the frequency
of the soft mode in incipient ferroelectric EuTiO3 was studied theoretically by Jiang and
Wu [20] using the soft-mode theory under a mean-field approximation.

The aim of the present paper is to study the phonon spectra in hexagonal
multiferroic RMnO3 substances using a Green’s function technique beyond the random phase
approximation.

2. The model

Following Wu et al [21] the Hamiltonian of a multiferroic system can be presented as:

H = H e + H m + H me. (1)

H e denotes the Hamiltonian for the electrical subsystem which is dealt with within the
framework of the transverse Ising model (TIM). Thus H e in the presence of an electric field
can be written as:

H e = −�
∑

i

Sx
i − 1

2

∑

i j

Ji j S
z
i Sz

j − μE
∑

i

Sz
i , (2)

where Sx
i , Sz

i are the spin-1/2 operators of the pseudo-spins, E represents the external
electric field, Ji j denotes the nearest-neighbour pseudo-spin interaction and � is the tunnelling
frequency. In this system the mean electric polarization is proportional to the z component
of the pseudo-spins introduced in the TIM. In the ordered phase we have the mean values
〈Sx 〉 �= 0 and 〈Sz〉 �= 0, and it is appropriate to choose a new coordinate system rotating the
original one used in (2) by an angle θ in the xy plane [2]. The rotation angle θ is determined
by the requirement 〈Sx′ 〉 = 0 in the new coordinate system.

H m is the Hamiltonian for the magnetic subsystem, which is given by the Heisenberg
Hamiltonian:

H m = − 1
2

∑

〈i j〉
A1(i, j)Bi · B j − 1

2

∑

[i j ]
A2(i, j)Bi · B j − gμB H

∑

i

Bz
i , (3)

where Bi is the Heisenberg spin at the site i , and the exchange integrals A1 and A2 represent
the coupling between the nearest and next-nearest neighbours, respectively. H is the external
magnetic field parallel to the z axis. 〈i j〉 and [i j ] denote a single summation over the nearest
neighbours and the next nearest neighbours, respectively.

The most important term is H me which describes the coupling between the magnetic and
the electric subsystems in the ferroic compound:

H me = −g
∑

〈i j〉

∑

kl

Sz
k Sz

l Bi · B j . (4)

Here g is the coupling constant between the magnetic and the electric order parameters.
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In order to investigate the phonon spectrum and the experimentally obtained strong
spin–phonon coupling we have to include the following two terms in the Hamiltonian in
equation (1):

H ′ = Hph + Hsp−ph. (5)

The first term Hph contains the lattice vibrations including anharmonic phonon–phonon
interactions:

Hph = 1

2!
∑

q

(Pq P−q + (ω0
q)

2 Qq Q−q) + 1

3!
∑

q,q1

B(q, q1)Qq Q−q1 Qq1−q

+ 1

4!
∑

q,q1,q2

A(q, q1, q2)Qq1 Qq2 Q−q−q2 Q−q1+q, (6)

where Qq , Pq and ω0
q are the normal coordinate, momentum and frequency, respectively, of the

lattice mode with a wavevector q. The vibrational normal coordinate Qq and the momentum
Pq can be expressed in terms of phonon creation and annihilation operators:

Qq = (2ω0
q)

−1/2(aq + a†
−q), Pq = i(ω0

q/2)1/2(a†
q − a−q). (7)

Hsp−ph describes the interaction of the pseudo-spins of the ferroelectric subsystem and of
the magnetic spins with the phonons. This is very important in order to explain the experimental
data for Raman and IR spectroscopy lines in multiferroics.

Hsp−ph = −
∑

q

F̄e(q)Qq Sz
−q − 1

2

∑

q,p

R̄e(q, p)Qq Q−p Sz
p−q

−
∑

q

F̄m(q)Qq Bz
−q − 1

2

∑

q,p

R̄m(q, p)Qq Q−p Bz
p−q + h.c., (8)

where

F̄e(q) = 1√
N

∑

h

1

|h| (eqh)J ′(h) exp(iqh), (9)

R̄e(p, q) = 1

N

∑

h

(
J ′′(h) − J ′(h)

|h|
)

(ep−qh)(exp(ip.h) + exp(iqh)). (10)

The summation extend over the vectors h = ri −r j connecting all possible pairs of spin sites in
the crystal and eq is the polarization of the phonon with wavevector q. Fe(q) = F̄e(q)/(2ω0

q)
1/2

and Re(q, p) = R̄e(q, p)/(2ω0
q)

1/2(2ω0
p)

1/2 designate the amplitudes for coupling phonons to
the pseudo-spin-wave excitations in first and second order, respectively. Analogous equations
exist for the coupling constants between the phonons and the magnetic spins.

3. The phonon Green’s function

The retarded phonon Green’s function to be calculated is defined as

G(k, ω) = 〈〈ak; a†
k〉〉, (11)

where ak and a†
k are the phonon annihilation and creation operators, respectively. For

the approximate calculation of the Green’s function we use a method proposed by
Tserkovnikov [22], which is appropriate for spin problems. After a formal integration of the
equation of motion for the Green’s function (11), one obtains

Gi j(t) = −iθ(t)〈[ai; a+
j ]〉 exp(−iωi j(t)t) (12)
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where

ωi j (t) = ωi j − i

t

∫ t

0
dt ′t ′

( 〈[ ji(t); j+
j (t ′)]〉

〈[ai(t); a+
j (t ′)]〉 − 〈[ ji(t); a+

j (t ′)]〉〈[ai(t); j+
j (t ′)]〉

〈[ai(t); a+
j (t ′)]〉2

)
(13)

with the notation ji(t) = 〈[ai , Hint]〉. The time-independent term

ωi j = 〈[[ai , H ]; a+
j ]〉

〈[ai; a+
j ]〉 (14)

is the energy in the generalized Hartree–Fock approximation (GHFA). The time-dependent
term in equation (13) includes damping effects.

We have calculated the phonon energy from equation (14) beyond the random phase
approximation (RPA) taking into account the correlation functions. Below TC ωRPA(T ) >

ω(T ). The deviation between these curves increases when the temperature increases. In the
RPA ω is a constant above TC, which is obviously incorrect. This confirms the importance of
the phonon correlation functions N̄q below and above TC which we have taken into account.
The following expression is obtained which contains the phonon energy ω0, two terms due
to the anharmonic spin–phonon interactions Re , Rm and two terms due to the anharmonic
phonon–phonon interactions A, B:

ω(k)2 = ω2
0 − 2ω0

(
0.5σ 2 cos θ Re(k) + M2 Rm(k) − 1

2N

∑

q

Akq(2N̄q + 1)

− B(k)〈Q(k)〉δk0

)
, (15)

with

〈Q(k)〉 = σ 2 cos θ Fe(k) − 1
N

∑
q Bkq(2N̄q + 1) + M2 Fm(k)

ω0 − σ 2 cos θ Re(k) − M2 Rm(k) + 1
N

∑
q Akq(2N̄q + 1)

. (16)

Above TC the spin–phonon interactions do not contribute to the phonon energy (because σ

and M vanish), and only the anharmonic phonon–phonon interactions remain. The phonon
frequency ω is renormalized owing to the anharmonic phonon–phonon and spin–phonon
interactions. If they are not taken into account, then ω is identical to the energy ω0 of the
uncoupled optical phonon. It will be independent of temperature. The calculations show that
for R = 0, i.e. including only anharmonic phonon–phonon interaction, the phonon mode
shows very weak temperature dependence. If we want to explain the experimental data for
the nonlinear temperature dependence of the phonon modes in multiferroics we must include
higher-order pseudo-spin–phonon interactions, which play an important role below TC, i.e. we
must not neglect the effects of spin ordering, and the Hamiltonian which describes the system
must include terms taking into account not only the anharmonic phonon–phonon interaction
but also the anharmonic spin–phonon interaction.

The phonon damping is calculated from equation (13) in second-order theory as

γ (k) = γph−ph(k) + γsp−ph(k). (17)

For the damping due to the phonon–phonon interactions we have

γph−ph(k) = 3π

N

∑

q

[B2(q,−k, k − q) + B2(q, k − q,−q)](N̄q − N̄k−q )

× [δ(ωk − ωq − ωk−q ) + δ(ωk − ωq + ωq−k)]
+ 8π

N2

∑

q,p

[A2(q,−k, p, k − q − p) + A2(q, p,−k, k − q − p)]

× [N̄p(1 + N̄q + N̄p+k−q ) − N̄q N̄p+k−q ]δ(ωk − ωq + ωp − ωk+p−q ). (18)
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γsp−ph is the damping due to the spin–phonon interactions:

γsp−ph(k) = 4π M2

N

∑

q

F2
m(q, q − k)(m̄q − m̄q−k)δ(Em,q−k − Em,q − ωk)

+ 4π M2

N2

∑

q,p

(R2
m(−k, p, q)(m̄q − m̄ p)[(1 + N̄k+p−q )

× δ(Em,p − Em,q − ωk+p−q + ωk) + N̄q−k−pδ(Em,p − Em,q + ωq−k−p + ωk)]
+ [R2

m(−k, p, q) + R2
m(k − q + p, p, q)]m̄q(1 + m̄ p)

× [δ(Em,p − Em,q − ωk+p−q + ωk) − δ(Em,p − Em,q + ωq−k−p + ωk)])
+ π

N2

∑

q,p

[R2
m(−k, p, q) + R2

m(k − q + p, p, q)]〈Bz
p Bz

−p〉〈Bz
q Bz

−q〉

× [δ(Em,p − Em,q − ωk+p−q + ωk) − δ(Em,p − Em,q + ωq−k−p + ωk)]
+ π

4
F2

e (k)δ(ωk − Ee,k) + π

N

∑

q

F2
e [(N̄q − n̄k−q )

× δ(Ee,k−q − ωq − Ee,k) + (1 + N̄q + n̄k−q )δ(ωq + Ee,k−q − Ee,k)]
+ π

8N2

∑

q

R2
e (q, k + q)(N̄q − N̄k+q )δ(ωk+q − ωq − Ee,k)

+ π

2N2
cos2 θ

∑

q,p

R2
e (k, q, p)[N̄p(1 + N̄q + n̄k+q−p) − N̄q n̄k+p−q ]

× δ(ωq − ωp + Ee,k+p−q − Ee,k), (19)

where N̄q = 〈a†
qaq〉, m̄q = 〈B−

q B+
q 〉 and n̄q = 〈S−

q S+
q 〉 are correlation functions which are

calculated via the spectral theorem. For low temperatures the main contribution to the damping
comes from the spin–phonon interaction, whereas in the vicinity of TC and above, where the
polarization and the magnetization vanish, only the anharmonic phonon–phonon interaction
terms remain.

The quantity σ(T ) is the relative polarization in the direction of the mean field and is
equal to 2〈Sz′ 〉. M(T ) = 〈Bz〉 is the relative magnetization. In order to obtain σ we must
calculate the pseudo-spin wave energy Ee in the generalized Hartree–Fock approximation from
the retarded Green’s function for the ferroelectric subsystem: G(k, ω) = 〈〈S+

k ; S−
k 〉〉

Ee(k) = 2� sin θ + 1
2σ cos2 θ Jeff − 1

4σ sin2 θ Jeff(k) + μE cos θ

− 1

Nσ

∑

q

(
cos2 θ Jeff(k − q) − 1

2
sin2 θ Jeff(q)

)
〈S−

q S+
q 〉. (20)

It can be seen that the pseudo-spin exchange interaction constant J is renormalized due to
the interaction constant between the electric and magnetic subsystems g and due to the spin–
phonon coupling to Jeff:

Jeff = J0 + 2g〈Bz〉2 + 2(F2
e + F2

m)

ω0 − σ cos θ Re + 0.5A − M Rm
. (21)

For the rotation angle θ we have the following two solutions in the generalized Hartree–Fock
approximation:

(1) cos θ = 0, i.e. θ = π

2
, if T � Tc;

(2) sin θ = 4�

σ Jeff
= σc

σ
, if T � Tc.
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The relative polarization is given by

σ = 1

2
tanh

Ee(k)

2kBT
. (22)

For the magnetic subsystem we obtain the spin-wave energy in the generalized Hartree–
Fock approximation from the retarded Green’s function g(k, ω) = 〈〈B+

k ; B−
k 〉〉:

Em = gμB H + 1

2〈Bz〉
1

N

∑

q

(Aeff
1 (q) − Aeff

1 (k − q))(2〈Bz
q Bz

−q〉 − 〈Bz
k−q B+

k−q〉)

+ 1

2〈Bz〉
1

N

∑

q

(A2(q) − A2(k − q))(2〈Bz
q Bz

−q〉 − 〈Bz
k−q B+

k−q〉). (23)

The spin exchange interaction constant between next-neighbours A1 is renormalized, too,
through the coupling between the electric and magnetic subsystems g and due to the spin–
phonon coupling to Aeff

1 :

Aeff
1 = A1 + 2gσ 2 cos2 θ + 2(F2

e + F2
m)

ω0 − σ cos θ Re + 0.5A − M Rm
. (24)

The relative magnetization M is given for arbitrary spin value S by

M = 1

N

∑

k

[(S + 0.5) coth[(S + 0.5)β Em(k)] − 0.5 coth(0.5β Em(k))]. (25)

4. Numerical results and discussion

In this section we shall present the numerical calculations of our theoretical results taking the
following model parameters which are appropriate for hexagonal YMnO3 with TN = 80 K
and TC = 900 K: A1 = 85 K, A2 = −60 K, � = 20 K, J = 3600 K, A = −1 cm−1,
B = 0.5 cm−1, Fe = Fm = 10 cm−1, ω0 = 680 cm−1, g = 50 K, S = 2 for the magnetic
ions and S = 0.5 for the pseudo-spins. We have calculated the temperature dependence of
the phonon energy in a hexagonal lattice for k = 0 and different anharmonic spin–phonon
interaction Re and Rm constants which can be positive, R > 0, or negative, R < 0 [2, 3].
The frequency shift below TN and TC can be explained only if we assume a spin-dependent
force constant given by the first and second derivatives of the exchange interaction A1(ri − r j )

(or Ji j ) between the i th and j th ions with respect to the phonon displacements ui , u j . This
displacement is interpreted by taking the nearest-neighbour exchange integral A1(ri − r j )

(or Ji j ) and the next-nearest-neighbour exchange integral A2(ri − r j ) (or Ki j ). The squared
derivatives of A1 and A2 (or J and K ) with respect to the phonon displacement can have
opposite signs. If we denote them by R1 and R2 accordingly, then the additional shift 
ω of
the phonon frequency which is due to the spin–phonon interaction can be written as [23]


ω = [−R1〈S1 S2〉 + R2〈S1S3〉]/〈Sz
0〉2. (26)

〈S1 S2〉 and 〈S1 S3〉 are the correlation functions between nearest-neighbour spins and next-
nearest-neighbour spins, respectively. In our model the force constant R is equal to
−R1 + R2. This can be connected with the interaction and competition for example
between the zone-centre ferroelectric modes and the zone-corner antiferrodistorsive modes,
or due to the complexity of the hybridized Mn d-states there are both ferromagnetic and
antiferromagnetic contributions that differ for in-plane and out-of-plane neighbours. It is
clear that 〈Sz

1 Sz
2〉/〈Sz

0〉2 and 〈Sz
1 Sz

3〉/〈Sz
0〉2 below TC decrease when the temperature rises as

[〈Sz
1 Sz

2〉/〈Sz
0〉2] � [〈Sz

1 Sz
3〉/〈Sz

0〉2] because K0 < J0 (or A2 < A1). The correlation functions

6
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Figure 1. Temperature dependence of the phonon energy ω for the following spin–phonon
interaction constants: Re = Rm = 6 cm−1.

Figure 2. Temperature dependence of the phonon energy ω for the following spin–phonon
interaction constants: Re = 6 cm−1, Rm = 6 cm−1.

are equal at T = 0 K as the deviation between them increases when T → TC. From the above-
mentioned qualitative conclusions it follows that if R2 > R1 then d[
ω j (T )]/dT < 0, i.e. ω j

decreases with temperature. When R2 < R1 then d[
ω j (T )]/dT > 0 and 
ω j < 0, i.e. ω j

grows with temperature. But the competition between the exchange interaction of nearest- and
next-nearest-neighbours is only one of the possible explanations. In principle, the different sign
of R can also be connected with different strains due to the influence of defects, mechanical
strain, or with different ordering in the layers and between the layers in thin films etc.

The temperature dependence of the phonon energy for different Re and Rm values is shown
in figures 1–4. It can be seen that in all figures there is an anomaly, a kink around the magnetic
phase transition temperature TN = 80 K which arises from spin–phonon interactions. The
phonons show a magnetic shift below TN, where the rare earths moments in RMnO3 start to
order. The kink is due to the magnetoelectric effect, too. Above TC = 900 K the phonon

7
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Figure 3. Temperature dependence of the phonon energy ω for the following spin–phonon
interaction constants: Re = 6 cm−1, Rm = −6 cm−1.

Figure 4. Temperature dependence of the phonon energy ω for the following spin–phonon
interaction constants: Re = Rm = −6 cm−1.

energy slightly decreases. It is plausible to expect these different behaviours of the phonon
frequencies in figures 1–4, hardening or softening in dependence on the sign of R. The different
multiferroic substances have different interactions between the two subsystems. In BiMnO3 and
YCrO3 there is interaction between ferromagnetic and ferroelectric subsystems, in YMnO3 and
BiFeO3 between antiferromagnetic and ferroelectric [1], and in BiCrO3 films it was recently
found that there is an interaction between antiferroelectricity and antiferromagnetism (or weak
ferromagnetism) [24]. Modern studies of hexagonal YMnO3 have revealed a coupling between
the ferroelectric and magnetic ordering [25]. The obtained temperature behaviour in figure 4
was measured in the phonon spectra of BiFeO3 by Haumont et al [8]. We will further discuss
the influence of the parameters A1, Rm and g, because we will observe the anomalies around
the magnetic phase transition. The pseudo-spin–phonon interaction Re influences mainly the
phonon energy between TN and TC.

8
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Figure 5. Temperature dependence of the phonon energy ω for Re = 6 cm−1 and different magnetic
spin–phonon interaction Rm : (1) Rm = 2, (2) 6, (3) 10 cm−1.

Figure 6. Temperature dependence of the phonon energy ω for Re = 6 cm−1 and different magnetic
spin–phonon interaction Rm : (1) Rm = −2, (2) −6, (3) −10 cm−1.

The shift of the phonon spectra is dependent not only on the sign of the spin–phonon
interaction constant Rm but also on the magnitude of Rm which is indirectly connected with the
radius of the rare earth ion. This is demonstrated in figures 5 and 6. With increasing magnetic
spin–phonon coupling Rm the phonon frequency decreases linearly (figure 6). Our spin–phonon
interaction constant Rm is connected through the first and second derivatives with the exchange
interaction constant A1(ri − r j ) which depends on the distance between the neighbouring
spins. So it can be smaller when the distance is bigger, i.e. the radii of the ions are smaller,
or greater for smaller distance, i.e. greater radius. So we have different Rm values in different
multiferroic compounds. With decreasing Rm , i.e. with decreasing radius of the rare earth
ion, the anomaly around TN is smaller, for example for Y. The phonon energy shows a strong
analogous dependence on the exchange interaction constant A1(ri − r j ), which depends on the
distance between the spins and indirectly on the radius of the ions. ω decreases with increasing
A1. The magnetic phase transition temperature TN increases with increasing A1.

9
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Figure 7. Temperature dependence of the phonon energy ω for Re = Rm = 6 cm−1 and different
g values: (1) g = 50, (2) 100, (3) 200 cm−1.

Figure 8. Temperature dependence of the phonon energy ω for Re = 6 cm−1, Rm = −6 cm−1 and
different g values: (1) g = 50, (2) 100, (3) 200 cm−1.

The effect of the coupling constant between the magnetic and electric subsystems g is
shown in figures 7 and 8. It can be seen that the phonon energy depends strongly not only
on g but also on the sign of the spin–phonon interaction Rm . With increasing g for T =
const the phonon energy is enhanced for Rm < 0 and reduced for Rm > 0. The magnetic
phase transition TN increases with increasing g and for TN = TC = 900 K the kink around
TN disappears. There is experimental evidence of different coupling strengths and different
coupling mechanisms between the magnetic and ferroelectric systems in different multiferroics.
The replacement of magnetic Ho by Y in YMnO3 results in an even larger suppression of the
thermal conductivity [5]. Sergienko et al [26] predicted that the polarization in HoMnO3 would
be enhanced by up to two orders of magnitude with respect to that in TbMnO3 where the ME
interaction term is linear in the electrical dipole moment.

We have calculated numerically the phonon damping in dependence on temperature and
different interaction constants. The results are shown in figures 9 and 10. The damping γ

10
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Figure 9. Dependence of the phonon damping γ on the magnetoelectric coupling g for T = 60 K
and Re = Rm = 6 cm−1.

Figure 10. Temperature dependence of the phonon damping γ for Re = 6 cm−1, g = 50 cm−1

and different values of the magnetic spin–phonon interaction constant Rm : (1) Rm = 2, (2) 6,
(3) 10 cm−1.

decreases with increasing magnetoelectric coupling constant g (figure 9). We obtain that γ

increases with temperature and with increasing Rm (for the two cases Rm > 0 and Rm < 0,
because the damping is proportional to R2

m) (figure 10). It is clearly seen that around the
phase transition temperatures TN and TC there are strong anomalies, in agreement with the
experimental data of Haumont et al [8]. The damping increases with increase in the exchange
interaction constants A1 and J and with increase in the anharmonic pseudo-spin–phonon
interaction constants Rm and Re. The damping can be observed from the full width of the
half maximum in Raman spectroscopic experiments. Sushkov et al [18] have obtained very
different line widths in different multiferroic substances. The origin of the very different widths
is not quite clear. We obtain that the damping of the phonon modes is strongly dependent on
the magnetoelectric coupling g, on the exchange interaction constants A1, J and mostly on the
spin–phonon interaction constants Rm and Re. In figure 10 we have shown that the damping
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Figure 11. Temperature dependence of the phonon energy ω for Re = 6 cm−1, Rm = −6 cm−1,
g = 50 cm−1 and different H values: (1) H = 0, (2) 10, (3) 20 Oe.

Figure 12. Temperature dependence of the phonon damping γ for Re = 6 cm−1, Rm = −6 cm−1,
g = 50 cm−1 and different H values: (1) H = 0, (2) 10, (3) 20 Oe.

decreases with decreasing Rm . Rm is indirectly connected with the radius of the rare earth ion,
which is different in various multiferroics (see discussion after figures 5 and 6). So we have
different Rm values in various multiferroic compounds which lead to different damping values,
i.e. to different line widths in different multiferroic substances. The different anharmonic spin–
phonon interactions are one of the possible explanations of the different line widths in different
multiferroic substances.

The discussion above was given for H = 0. The influence of an applied magnetic field H
on the phonon energy can be seen in figure 11. The phonon energy ω and the magnetic phase
transition temperature TN increase with increasing H and the kink around TN disappears. This
is in qualitative agreement with the experimental data of Cheong [19] and Barath et al [27]. The
phonon damping decreases for larger values of the applied magnetic field H and the anomaly
around TN disappears, too (figure 12).
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5. Conclusions

We have considered the coexistence and interplay of different properties—(anti)ferromagnetic,
(anti)ferroelectric and phonon—in multiferroic materials based on the Heisenberg and
transverse Ising models taking into account the anharmonic spin–phonon and phonon–phonon
interaction terms. We have obtained for the first time the temperature dependence of the
phonon spectrum including damping effects for different magnetoelectric couplings, exchange
interactions and mostly for different spin–phonon interaction constants. The phonon energy
and the phonon damping show strong anomalies around the two phase transition temperatures
TN and TC which are due to the magnetoelectric and to the spin–phonon interaction. With
decreasing magnetic spin–phonon coupling Rm , i.e. decreasing radius of the rare earth ion,
the phonon frequency increases and the anomaly around TN is smaller, for example for Y. We
obtain that the phonon damping is strongly dependent on the magnetoelectric coupling g, on
the exchange interaction constants A1 and J and on the spin–phonon interaction constants
Rm and Re. The different anharmonic spin–phonon interaction constants (due for example
to different rare earth ion radii or to different exchange interaction constants) are one of the
possible explanations of the different line widths obtained in different multiferroic substances.
The influence of an external magnetic field on the phonon spectrum is also calculated. We
obtain that the phonon energy increases whereas the damping decreases with increasing H .
The kink around TN vanishes. The theoretical results are in qualitative agreement with the
experimental data.
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